Roll No.

# 328352(28)

## B. E. (Third Semester) Examination, Nov.-Dec. 2021

(New Scheme)

(Et & T Branch)

#### PROBABILITY and RANDOM VARIABLES

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. The first part (a) in each question is compulsory which is of 2 marks. Attempt any two parts from the rest three (b), (c) and (d) is of 7 marks.

#### The state of the s

1. (a) What are condition for existing of fouriers series? 2

|   | (b) | State and prove perseval theorem.                      | 7 |
|---|-----|--------------------------------------------------------|---|
|   | (c) | Find the fourier transform and plote magnitude and     |   |
|   |     | phase spectrum of signal $x(t) = e^{-at} \cdot u(t)$ . | 7 |
|   | (d) | Find the cross correlation between $v_1(t) = \sin wt$  |   |
|   |     | and $v_2(t) = \cos wt$                                 | 7 |
|   |     |                                                        |   |
|   |     | Unit-II                                                |   |
| • | (a) | Define sample space.                                   | 2 |
|   | (b) | In a game of dice, a "shooter" can win outright if     |   |
|   |     | the sum of the two number showing up is either 7       |   |
|   |     | or 11 when two dice are thrown. What is                |   |
|   |     | probability of winning outright?                       | 7 |
|   | (c) | An ordinary 52-card deck is the roughly shuffled.      |   |
|   |     | You are dealt four card up. What is the probability    |   |
|   |     | that all four card are sevens?                         | 7 |
|   | (d) | An airline in a small city has five departures each    |   |
|   |     | day. If is known that any given flight has a           |   |
|   |     | probability of 0.3 of departing late. for any given    |   |
|   |     | day find the probability that                          | 7 |

| (i) | No | flights | depart | late |
|-----|----|---------|--------|------|
| (-) |    | 1110    | e-part |      |

- All flight depart late.
- Three or more depart on time.

### Unit-III mans mean emball to lead at

(a) Define random variable.

(b) Find mean and variance of random variable X which is uniformar distributed between a and b, a < *b* 

7

(c) A random variable X has the distribution function

$$F_x(x) = \sum_{n=1}^{\nu} \frac{n^2}{650} u(x-n)$$

Find the probabilities

7

$$(i) \qquad P\{-\infty < X \le 6.5\}$$

- (ii)  $P\{X > 4\}$
- (iii)  $P\{6 < X \le 9\}$
- Given the function (b) Consider the audom process

$$g_x(x) = y \cos(\pi x/2b) \operatorname{rect}(x/2b)$$

| П  | - 4 | - 1 |
|----|-----|-----|
| 1  | 4   | -1  |
| L. |     | ч.  |

Find the value of b so that  $g_x(x)$  is a valid probability density.

- Define mean ergodic process.
  - State and explain the properties of auto correlation function of random process.
  - Write short note on Gaussion random process.
  - Given the auto correlation function, for a stationary ergodic process with no periodic components is

$$R_{XX}(z) = 25 + \frac{4}{1 + 6\tau^2}$$

Find the mean value and variance of the process

- Define power density spectrum.
  - Consider the random process

$$X(t) = A_{c} \cos(w_{o}t + \theta)$$

[5]

where  $A_0$  and  $W_0$  are real constants and  $\Theta$  is a random variable uniformaly distributed on the interval  $(0, \pi/2)$ . Find the average power  $P_{XX}$  in X(t).

State and explain the properties of the power density spectrum.

7

Derive the relationship between cross power spectrum and cross-correlation function.

2